释放人工智能潜力

关于联发创新基地

联发创新基地是全球联发科技集团内部特设的人工智能研究单位。我们在英国剑桥与
台湾大学设有两处先进的研究中心,以此缔造协力合作的环境,并与全球备受尊敬的
机构与学者密切合作。

我们的团队由计算机科学、工程学、数学与物理学等不同背景的优秀研究人员组成。
这些专业知识让我们能够从多重角度应对极具压力的挑战,推动创新和跨学科合作,
以寻求基础突破和实际应用。

Image slider 1
Image slider 2
Image slider 3
IMG_3783
team 5
20220630_112541
neurips scaled
Vision banner

愿景

我们的愿景是突破人工智能(AI)与机器学习(ML)的极限。我们致力于研发让人类更强
大的创新科技,并持续推动这一领域的发展,同时努力创建智能、道德、安全与可持
续的系统。

我们的目标是让机器能以自然、直观且有益于社会的方式去学习、推理并与人类互动;
它将增强人类的潜能,让我们过上更快乐、更健康、更充实的生活。我们相信通过突
破人工智能的极限,能开启塑造人类未来的新机会、新发现与新进步。

研究内容

论文

论文

Plus icon
视频

视频

Plus icon
博客

博客

Plus icon
论文

论文

Plus icon
视频

视频

Plus icon
博客

博客

Plus icon

最新资讯

Innovate UK
2023-06-23

Innovate UK awards MediaTek Research £1 million funding on Eureka Globalstars.

ICML
2023-06-23

Improving generative modelling with Shortest Path Diffusion (ICML paper)

MediaTek Research launches the world’s first AI LLM in Traditional Chinese
2023-04-28

MediaTek Research launches the world’s first AI LLM in Traditional Chinese

MediaTek Research: Improving the speed and reliability of AI model training
2023-04-28

MediaTek Research: Improving the speed and reliability of AI model training

Latest update item image 1
2022-10-25

AI breaks into IC design! Deep learning algorithm is showing its power

Latest update item image 3
2022-05-05

MediaTek Announces Breakthrough in Artificial Intelligence and Chip Design

Latest update item image 2
2021-11-16

MediaTek Research opened a brand new office in National Taiwan University

111
2021-11-12

MediaTek Research has 6 papers accepted at NeurIPS 2021 conference and workshops

专业领域

生成模型

生成模型

Artificial intelligence

人工智能

Wireless communication

无线通信

芯片定位

芯片定位

生成模型

生成模型

Artificial intelligence

人工智能

Wireless communication

无线通信

芯片定位

芯片定位

线上讲座

Chang Wei Yueh

Chang Wei Yueh

Trend in AI Theory Seminar: A Theoretical Analysis of Deep Q-Learning

Mark Chang

Mark Chang

Trend in AI Theory Seminar: Provably Efficient Reinforcement Learning Algorithms

Jezabel Rodriguez Garcia

Jezabel Rodriguez Garcia

Trend in AI Theory Seminar: Emergence: Complexity matters also in AI

Yu Wang

Yu Wang

Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope

Yen Ru Lai

Yen Ru Lai

Trends in AI Theory Seminar: Simple And Scalable Off-Policy Reinforcement Learning

Sattar Vakili

Sattar Vakili

An Overview of Stochastic Bandits

Chung En Tsai

Chung En Tsai

Trends in AI Theory Seminar: Learning Quantum States with the Log-Loss

Chiatse Wang

Chiatse Wang

Trends in AI Theory Seminar: An Introduction to Sampling High Dimensional Constrained Continuous..

Sattar Vakili

Sattar Vakili

Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning

Alexandru Cioba

Alexandru Cioba

An Introduction to the Mean-Field Approach for Neural Networks

Jun-Kai You

Jun-Kai You

Polyak-type step sizes for mirror descent methods

Mark Chang

Mark Chang

Optimal Order Simple Regret for Gaussian Process Bandits

Alexandru Cioba

Alexandru Cioba

An Introduction to the Mean-Field Approach for Neural Networks

Mark Chang

Mark Chang

Generative Flow Networks (GFlowNets)

Chung En Tsai

Chung En Tsai

Trends in AI Theory Seminar: "Online Portfolio Selection and Online Entropic Mirror Descent"

Kuan Jen wang

Kuan Jen wang

A brief introduction to optimization on manifolds

Yen Ru Lai

Yen Ru Lai

Off-Policy Deep Reinforcement Learning without Exploration

Mark Chang

Mark Chang

Contextual Bandits with Linear Payoff Functions

Sattar Vakili

Sattar Vakili

Kernel-Based Bandits: Fundamentals and Recent Advances

Jazabel Rodriguez Garcia

Jazabel Rodriguez Garcia

Neural Networks and Quantum Field Theory?

Si-An Chen

Si-An Chen

A Unified View of cGANs with and without Classifiers

Jia-Hau Bau

Jia-Hau Bau

Provable verification on maxpool-based CNN via convex outer bound

Michael Bromberg

Michael Bromberg

Overparametrized Neural Networks and Corresponding Error Estimates

Mark Chang

Mark Chang

Is Q-learning provably efficient?

Alexandru Cioba

Alexandru Cioba

A Brief Recap of SGD Convergence and an Application to MAML

Chang Wei Yueh

Chang Wei Yueh

Trends in AI Theory Seminar: Stochastic bandits robust to adversarial corruptions

Mark Chang

Mark Chang

Trends in AI Theory Seminar: "Contextual Bandits with Linear Payoff Functions"

Alexandru Cioba

Alexandru Cioba

An Introduction to the Mean-Field Approach for Neural Networks

Alexandru Cioba

Alexandru Cioba

A Brief Recap of SGD Convergence and an Application to MAML

Mark Chang

Mark Chang

Contextual Bandits with Linear Payoff Functions

您可能也感兴趣

联发科技人工智能处理单元(APU)

联发科技开发了独家的深度学习加速器(性能核心)、视觉处理单元(通用核心)、基于硬
件的多核调度器和软件开发套件(NeuroPilot),组成领先业界的人工智能处理单元
(APU) 的核心组件。

联发科技 NeuroPilot

我们用NeuroPilot迎接边缘AI带来的挑战。我们SoC中APU、GPU和CPU的异构
计算,为人工智能的功能与应用提供高性能与低功耗。开发人员可以针对芯片内的特
定处理单元,或者通过联发科技NeuroPilot软件开发套件(SDK)智能地为他们处理分
配。

Contact us loading=

想更深入了解联发创新基地吗?

欢迎联系我们
info@mtkresearch.com