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Abstract

Real-world tasks often include interactions with
the environment where our actions can drasti-
cally change the available or desirable long-term
outcomes. One formulation of this in the rein-
forcement learning setting is in terms of non-
Markovian rewards. Here the reward function,
and thus the available rewards, are themselves
history-dependent, and dynamically change given
the agent-environment interactions. An important
challenge for navigating such environments is to
be able to capture the structure of this dynamic
reward function, in a way that is interpretable
and allows for optimal planning. This structure,
in conjunction with the particular task setting at
hand, then determines the optimal order in which
actions should be executed, or subtasks completed.
Planning methods face the challenge of combina-
torial explosion if all such orderings need to be
evaluated, however, learning invariances inherent
in the task structure can alleviate this pressure.
Here we propose a solution to this problem by
allowing the planning method to recognise task
segments where temporal ordering is irrelevant
for predicting reward outcomes downstream. To
facilitate this, our agent simultaneously learns
to segment a task and predict the changing re-
ward function resulting from its actions, while
also learning about the permutation invariances
in the its history that are relevant for this predic-
tion. This dual approach can allow zero-shot or
few-shot generalisation for complex, dynamic re-
inforcement learning tasks.
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1. Introduction
When interacting with our environment in the real world,
our actions often influence this environment in ways that
markedly change the nature of possible future interac-
tions. One way to conceptualize this is in terms of a
non-Markovian reinforcement learning problem, where the
environment’s response depends on the history of agent-
environment interactions. In a Non-Markovian Reward
Decision Processes (Bacchus et al., 1996; Li et al., 2016;
Littman et al., 2017; Camacho et al., 2017; Brafman et al.,
2018; Icarte et al., 2018; Toro Icarte et al., 2019; Gaon
and Brafman, 2019) for example, rewards can depend on
the entire history of the agent. While this allows for the
formulation of a rich variety of tasks, this setup is clearly
problematic without the imposition of additional structure.
As we face a combinatorial explosion of histories (and thus,
when translating to a Markovian formulation, of states),
generalizing to new situations from such a representation
is likely to be very difficult, due to of the large number of
often closely related, but unique possible experiences.

Here we explore explicitly representing additional structure
in terms of invariances (LeCun and Bengio, 1998; Cohen
and Welling, 2016; Mondal et al., 2020; van der Pol et al.,
2021; Wang et al., 2022) in a changing reward-function.
Specifically, we will consider situations when a task is com-
posed of a sequence of subtasks that can be completed, and
become available, in different order. In this non-Markovian
setting rewards appear and disappear as a consequence of the
agent’s collection of other rewards, and the reward function
is thus time-varying and autoregressive. Unlike previous
work, we don’t provide the agent with a sketch of subtasks
to complete (Andreas et al., 2017), or policies for reaching
subgoals (Sohn et al., 2020), instead we aim to flexibly learn
a latent representation of different phases, or ’task states’
of the overall task. This latent representation is then be
combined with learning invariances in the subtask structure
in a planning module that performs ’jumpy’ planning over
the subtasks, jumping through and optimally reordering in-
variant sequences of the planning process under different
settings. Using these elements we hope to present an al-
gorithmic framework that allows reasoning over an agent’s
interactions with a dynamic environment and the resulting
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feedback loops.

2. Motivation
A core component of our approach is to augment the state
space of a task specified by a non-Markov reward func-
tion using an explicit task state variable. We would like
to segment the task into parts such that future rewards
are independent of the history during previous task states,
when conditioning on the current task state. We make the
assumption that the true reward function RTt

t (s′) , is al-
ways expressible as a function of the task identity Tt and
the complete state and reward history during the episode
H = (s0, s1, r1, ...st, rt), where we leave out the history
of actions for convenience and condition rewards on the
arrival state, though these assumptions are not central to our
approach.

2.1. Generalizable segmentation using episodic and
short-term memories

Given this assumption, we desire the decomposition of the
task into task segments that are generalizable, in the sense
that they can be transported over to new settings when e.g.
the assignment of rewards to states change. This means
that we want to abstract away the task structure from low-
level features such as observations and states when possible.
While we abstract away the task structure into the learned
tasks state representations, we will rely on a memory of
the current episode (short-term) and of previous episodes
(episodic), to store the other relevant details of the agent’s
experience, similarly to some previous memory-based ap-
proaches to generalization (Santoro et al., 2016; Fortunato
et al., 2019). To make predictions about currently available
rewards, the agent should only be allowed to use the history
of its current task state, and histories in identical task states
in past episodes. Instead of this idealized and discrete setup,
we encode task states as continuous latent variables, and
relax this restriction by using a similarity-based key-value
attention mechanism. This setup allows the retrieval of in-
formation from the external memory buffer while enabling
flexible learning through gradient decent, as well as poten-
tially the learning of higher order correlations between tasks
states.

2.2. Maximal invariant task states

Further, we would like to use these task states to identify
the maximal permutable (order-independent) sequences in
a task, allowing for the most flexibility and computational
savings when planning. We will incorporate this desire into
our loss function when designing the algorithmic mecha-
nism for learning about invariances by penalising the use
of positional information. This means encouraging, when-
ever possible, the masking out of positional encodings, and

Sequential task: new subtask (reward) available after completing previous
one

Order-independent task: invariance in orderings of initial red subtasks for
predicting availability of �nal gold reward 

Order-dependent task: no invariance, only particular ordering results in 
gold reward being available.

OR

OR

Figure 1: Examples of non-Markovian task structures,
where subtasks are represented by rewards to be collected.
In these examples, rewards can be collected once and new
available subtasks might appear. The second row shows
permutation invariance to the ordering of the red subtasks
in the first phase of the task.

establishing order-invariance.

3. Problem setup
3.1. Order-dependent and order-independent task and

subtasks

We will focus our attention on tasks where subtasks are
realized as different (identifiable) rewards that can be col-
lected during different task states, such that downstream
consequences might, or might not depend on the specific
ordering of collection. We illustrate the basic idea of a
sequential task, as well as of an order-dependent, and order-
independent task state in Fig. 1. A composite task can
then be made up of a sequence of such order-dependent or
independent task states.

4. Model components
Our model consists of four main components.

• An autoregressive sequence model outputting a task
state variable. This Teacher network is then used in
conjunction with an external memory buffer for re-
trieval, and a reward prediction network to predict
available rewards for any state.

• A Student network that learns invariances in order-
ings of episodes by trying to predict the outputs of the
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ordering-aware sequence model above.

• A tree search that identifies the next desirable subgoal,
using the external memory, the learned invariances,
and a distance metric over the state space.

• A navigation module that helps the agent navigate to
the desired subgoal.

Below we give more detail for each of these.

4.1. Reward-predictive retrieval Transformer

We implement our reward-predictive model as a memory-
augmented Transformer (Vaswani et al., 2017) with an
encoder-decoder architecture (Fig. S1), that outputs the
latent task state ct+1 for the next step, given a history of
rewards r0, · · · rt. This prediction happens autoregressively
as the agent is acting in the environment, and in parallel for
all time steps during learning using offline updates. During
such updates a single pass through the transformer generates
the latent task states for a complete episode, using triangular
causal masks to ensure that the inference of the latent task
state only uses past reward information.

We use the encoder-decoder setup to allow for a separation
of two components of representation learning. The encoder
first summarizes the reward history into a first estimate of
the latent task state. The decoder then refines this using
comparison to the previously stored task state representa-
tions in the memory buffer M , which are fed as targets to
the decoder. Because the task state representations c pro-
posed by the Transformer will be compared to those in the
memory buffer during retrieval and reward prediction, these
targets are important in ensuring that the proposed repre-
sentations c are grounded in the memory buffer already at
the point of generation. This helps faster convergence to a
progressively better segmentation of the task. We do not use
positional encodings for this network, as part of the chal-
lenge in this subtask-based RL setting is that the specific
temporal location (both absolute and relative) of rewards
changes form episode to episode, and task to task. The
multi-layer architecture, together with the masking, ensures
that the network has enough information about orderings,
without positional encodings. It can thus capture the de-
pendencies of task states on temporal orderings of rewards,
while helping faster learning of this structure using episodes
with different temporal profiles.

To predict rewards in arrival states, the task state represen-
tation is used in conjunction with the memory buffer M ,
to construct reward maps for the environment. To predict
rewards, the model uses the current latent task state repre-
sentation c and the embedding of a proposed arrival state
ϕ(s). These act as keys for reading from a memory buffer of
past transitions in the current episode M t, and a fixed size

sample of past episodes M̄ . The sampling of past episodes
is prioritized to include episodes with low prediction errors
on previous updates, as well as ones with diverse reward-
orderings. When the memory is read, several sufficient
statistics are retrieved for reward prediction, using permu-
tation invariant retrieval mechanisms (such as sum, mean,
or max over the per-transition retrieved values from the
memories). These statistics in general could be predefined
or learned, in this work we used three such prespecified
sufficient statistics. These condition predictions by focusing
on part of the agent’s history that shared the same task state
and same arrival state, in a soft way. We give the details for
computing these statistics in Appendix A.

4.2. Student Transformer for learning positional
invariances

To learn the permutation invariances in the reward function
we deploy a smaller Transformer, that only has access to
ordering information through positional encodings. To en-
sure this strict dependence when processing an episode as a
sequence, we still require the use of a causal mask, as later
rewards might carry information about the order in which
earlier ones were collected, thus relaying ordering informa-
tion without relying on positional encodings. The use of
causal masks means that we also cannot feed back the out-
put of an encoder layer for further use with self-attention, as
this would break the permutation invariance of the attention
mechanism with respect to the input sequence, thus again
encoding order information. Therefore, to restrict ordering
information to only come from the positional encodings, this
network only consists of an Encoder with a single Encoder
layer. Positional encodings are added to keys and values
(but not to queries), but they can be masked out by a gating
variable gt, taking values in {0, 1}, thus explicitly encoding
invariances. The self-attention then becomes:

sofmtax
(Q(K + P ⊙G)T√

d

)
(V + P ⊙G)

where the masking is implemented by an elementwise prod-
uct with the matrix G, with Gi,t = gt

We train the Student Transformer to predict the task state
embeddings ĉteacher produced by the Teacher Transformer
in order to find the best assignment of positional masking
to task states, and thus infer the relevant the permutation
invariances. We assume that this invariance can be learnt
as a function of the task state representation produced by
the Teacher Transformer, and therefore treat g as a function
of ĉteacher. The Student Transformer takes as input the
sequence of rewards as before, and we train the parameters
of the Transformer and evaluate on a holdout part of the
memory for each masking assignment, resulting in a dual
optimization problem with a discrete outer loop. We further
discuss the training approach in section B of the Appendix.
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Figure 2: The tree search evaluates episodes from the mem-
ory buffer that share a position in task state space similar to
the agent’s current one. The search proceeds by ‘translat-
ing’ the episode to the current task setting (assignment of
subtasks to states), and by reordering the subtasks in permu-
tation invariant task states to find an ordering that promises
the best return.

4.3. Tree search on the memory buffer using positional
invariances

The search procedure (Fig. 2) also uses a subset of episodes
M̄ from the memory buffer, allowing the agent to rearrange
these previous experiences into potentially more optimal
ones. The first step is to find episodes with similar histories
as the current one, in order to plan ways to continue execut-
ing the current task in the best possible way. The agent tries
to locate, in each past episode ei in the sampled memory,
the closest position in ‘task state space’ to its current posi-
tion in the task in the current episode. To do this, it looks
for a similar task state, and, in case of an order-dependent
task state, a similar reward history within the task state, and
computes match likelihoods based on these similarities.

The algorithm then samples, according to these likelihoods,
a fixed number of episode/position pairs that are most likely
to correspond to the current position in the current task (the
same episode might be sampled with different positions,
however duplicate episode/position pairs are not used). The
tree search proceeds by evaluating the returns from the
remaining parts of these episodes in two ways: by assigning
subtasks to their locations under the current task setting, and
by permuting segments in the episode that are believed to
be order-invariant as indicated by the values of g.

A sampling based search procedure is necessary as we still
need to evaluate different permutations of the smaller, order-
independent sub-sequences. A choice of ordering can affect
which subsequent trajectories are optimal in a particular task
instantiation, however, this effect will only depend on the
final subgoal of each such sub-sequence, while the interme-
diate subgoals can be locally optimally reordered without
needing separate evaluations by a downstream search. This
results in having to search through a linear, rather than expo-
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Figure 3: a, Learned positional invariances lead to better
performance overall (n=10, mean± sem). b, This advantage
is even more pronounced when transferring to a new task,
where using the right invariances leads to better zero-shot
performance. c, Learning the correct invariances also leads
to better performance on the original task. d,Training errors
during an example run of the reward prediction model. e,
cosine similarities between the task state variables at every
step of an example episode (brighter is higher).

nential space of orderings. The tree search proceeds along
promising branches using a procedure inspired by Monte
Carlo Tree search (Kocsis and Szepesvári, 2006), with a roll-
out policy to leave remaining subgoals of the episode under
consideration unpermuted, i.e. in the order in which they
were originally experienced and recorded in the memory.

For navigating to a chosen subgoal, we used a simple setup
as described in section C.

5. Experiments
We focus on a proof of concept evaluation, and test our
model on a non-Markovian grid-world navigation task (Fig.
S3) that combines elements from the different modalities
shown in Fig. 1. We give details of the task in section D of
the Appendix.

We evaluate our algorithm LPI-planning from several dif-
ferent perspectives. On Fig. 3a, 3b, and 3c we show the
cumulative returns on the ‘original’ and ‘transfer tasks’, and
compare to ablations where the positional gating is set to
either always 0, or always 1, as well as to the ‘oracle‘ value
. The discount factor was always set to gamma = 0.9, to
appropriately penalize longer trajectories. Fig. 3d shows
that the predictive model learns to correctly predict upcom-
ing rewards, while Fig. 3e illustrates an example of how the
task state variables c segment an episode.
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6. Discussion
We introduced a representational framework to learn the
subtask structure of complex, non-Markovian tasks in terms
of permutation invariances in their reward functions. This
framework can be useful for understanding the interactions
between an agent and a dynamic environment that constantly
changes as a consequence of the agent’s actions, and for
allowing robust predictions about the behaviour of similar
environments in future tasks. Important directions for future
work are to demonstrate this kind of structure in real world
datasets, where transfer and planning represent important
challenges, as well as to relax some of the more restrictive
assumptions of the current formulation.
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Figure S1: The Transfomer model takes as input tokenized rewards from an episode in the memory buffer, and autoregres-
sively outputs the task state variable for the next step. As targets for the decoder layer, it uses the latent task states recorder
for this episode during the last update.

A. Reward prediction using retrieved sufficient statistics
For reward prediction, we retrieve three sufficient statistics from M̄ , using c and a proposed arrival state as keys. The first
statistic is the total reward collected from each episode e in M̄ in the task state and arrival state specified by the keys ct and
ϕ(st+1) ∑

k

sim(ct, ce,k) · sim(st, se,k) · re,k

where sim denotes cosine similarity and k indexes the steps a in previous episode e. The second statistic is the maximum
reward retrieved with the keys across these previous episodes

max
k

[
sim(ct, ce,k) · sim(st, se,k) · re,k

]
And finally the third is the sum of rewards already collected during the current episode et∑

k

sim(ct, cet,k) · sim(st, set,k) · re,k.

This gives us the flexibility to predict locally non-Markovian rewards, e.g. rewards that can be ‘picked up’ only once, or that
deplete according to some well-defined rule, or indeed are Markovian. To predict the expected reward on arriving in state
st+1, these statistics are fed into a reward prediction convolutional network that predicts the value of the reward.
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Figure S2: The Student Transformer evaluates different assignments of the gating variable that gates positional encodings of
the input reward sequence. The gating function assigns a gating value of 0 (no positional encoding) or 1 (use positional
encoding) to prototypes of the task state variables, and the Student network tries to predict the task state variables output by
the Teacher Transformer network of Fig. S1. The Student Transformer only has access to ordering information through
positional encodings, leading it to perform better when it correctly assigns gating values to order-dependent and order-
independent task states.

When input into the Transformer, rewards were tokenized into a vector ρ(r), using a fixed tokenization depending on the
reward’s numerical value. Reward prediction estimates this numerical value, which is also the one used during planning to
evaluate returns. On the other hand, the weights for the network producing the state embeddings ϕs were learnt together
with those of the Transformer and reward network.

B. Training procedures
B.1. Reward-predictive Teacher Transformer and CNN

The reward-predictive Transformer and CNN were trained together using offline replay of previous episodes, concurrently
with the agent taking each step in the environment. For every update, a batch of 16 episodes was passed through the
Transformer once, using the sequence of tokenized rewards and task state embeddings recorded in M̄ . The rewards for each
step in each replayed episode were then predicted using the retrieved sufficient statistics and the reward CNN, and the mean
squared error loss backpropagated through both networks, as well as the state encoder network ϕ. We used the RMSprop
optimizer, with an annealed learning rate.

B.2. Student Transformer

The Student Transformer was trained every 10 episodes after an initial burn-in period in which all the positional gatings
were set to 1. During this training, we first permformed k-means clustering on the tasks state variables c recorded in M , and
then consider all the binary assignments of the gating variable to the clusters. For the training, we split the memory buffer
into a training and validation part, and train the Student Transformer separately (and from scratch) for each of the binary
assignments. The objective function was the mean squared error between the task state variable in the memory buffer (as
output by the Teacher Transformer), together with a regularizer term that penalises the masking variable g taking the value 1:

E
[
(cTeacher − cStudent)2 + βg · g

]
.
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or

Figure S3: Non-Markovian task with an order-independent task state with four subtasks, followed by and order-dependent
task state with three, followed by a final subtask available upon a particular ordering. The location of some of the relevant
rewards were shared between the different task states.

C. Distance metrics and navigation to subgoals
To evaluate a proposed novel ordering of subtasks, the agent requires some distance metric on the state space between pairs
of states and for lengths of (open) tours visiting a sequence of states. Previous work has used value functions (Eysenbach
et al., 2019), the successor representation (Dayan, 1993) or deep learning approach to combinatorial optimization (Kool
et al., 2019) to try to learn and extrapolate such a metric. To help focus on the other parts of our approach, here we used
exact the exact lengths of shortest paths to compute discounted returns when planning, and leave the incorporation of similar
learned approximations for future work.

Similarly, to navigate to a desired subgoal, we simply used the successor representation with a temporary, shaped reward
function that incentivized the agent to reach that subgoal and pick up the environmental reward. Depending on the exact
problem setting, a more involved goal-conditioned policy could be used to successfully guide the agent between subtasks.

D. Experiment details
For evaluation, we use a grid-world navigation task that combines elements from the different modalities shown in Fig.
1. For added complexity, we also assign several subtasks in different phases of the task assigned to the same state. In
particular our task (Fig. S3) is composed of three distinct phases: in the first, the agent has four rewards to collect (subtasks
to complete), each of which is available from the beginning of the episode, and can be collected once before it disappears.
Once all four has been collected, three new appear. The agent can again collect these rewards in any order, however only
one of these orderings will result in the appearance of the final reward. Whether accessing the final reward is worthwhile
depends also on the particular setting and the agent’s starting position.

We also focus mainly on the issue of exploitation, and give initial demonstrations to the agent by entering a limited number
of trajectories (covering a limited number of orderings) into the memory buffer. After this, the agent does no explicit
exploration, except through sampling when performing the tree search.

We run each agent ten times, initially for 50 episodes, at the beginning of each of which the agent is spawned at a random
location in the maze, resulting in a potentially new optimal ordering of subtasks each time. After 50 episodes the task setting
changes, and subtasks are assigned to new states, though the task structure remains the same. We provide this information of
the new assignment to the agent, so it can appropriately re-evaluate its past experiences. Learning is disabled at this point
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for the LPI-planning algorithm, but PPO (Schulman et al., 2017) is allowed to learn, or start from tabula rasa, whichever
gave better results.

E. LPI Algorithm

Algorithm 1 LPI

0: Require: Memory buffer M , number of clusters k, hyperparameters {}
Initialise M with some preloaded trajectories

0: for each episode do
0: t← 0, random initial state s← s0
0: while not terminal and steps taken in episode<limit do
0: Compute task state ct using history of rewards and M
0: if t >burn-in then
0: Compute gating mask gt as g(argmini||ct − cproti ||2)
0: else
0: g = 1
0: end if
0: Subsample M into M̄
0: if received reward in last step, or steps since last planning> np then
0: subgoal sg = SUBTASK TREE SEARCH (M̄ )
0:
0: end if
0: Take step towards sg
0: Execute a and obtain next state s′ and reward r = r(s′)
0: Store (c, g, s, s′, ϕ(s), ϕ(s′), r) in M
0: UPDATE TRANSFORMER(M̄ )
0: if every n-th episode then
0: (cproti )i=1···k = K-MEANS CLUSTER(Mc, k)
0: Split M into training and validation sets
0: for every assignment of 0 or 1 to each cluster prototype do
0: validation errors =TRAIN STUDENT TRANSFORMER (M )
0: choose winning assignment g(cproti )
0: Every n2 episodes, change task setting
0:
0: end for


