
MediaTek CorePilot 2.0

1

MediaTek CorePilot 2.0™

Heterogeneous Computing Technology

Delivering extreme compute performance with maximum power efficiency

In July 2013, MediaTek delivered the industry’s first mobile system on a chip with

Heterogeneous Multi-Processing. The MT8135 chipset for Android tablets features CorePilot 1.0

technology that maximizes performance and power saving with interactive power management,

adaptive thermal management and advanced scheduler algorithms. In 2015, MediaTek

introduced CorePilot 2.0, the evolution of CorePilot 1.0, with more advanced heterogeneous

computing technology to support not only symmetric CPU cores, asymmetric big/little CPU cores

scheduling, but also cooperation with CPU and GPU. By adding support to GPU, CorePilot 2.0

can provide better user experience by providing higher performance with lower power

consumption.

MediaTek CorePilot 2.0

2

Table of Contents
Introduction ... 3

MediaTek CorePilot － Heterogeneous Multi-Processing Technology 4

MediaTek Device Fusion － Heterogeneous Computing with a Fused

CPU+GPU Device .. 7

Problem of executing OpenCL program in mobile SoC 9

MediaTek Device Fusion ... 10

Case Studies Using CorePilot 2.0 .. 11

Super Resolution ... 11

Face Detection .. 12

Conclusion ... 13

MediaTek CorePilot 2.0

3

Introduction

With ever-increasing array of applications in the mobile device environment, better user

experience, balance between powerful computing capability, and efficient power/thermal

management has become a significant challenge for modern mobile device SoCs. The challenge

is to meet user’s performance need without device overheating and rapid battery drain.

Homogeneous computing resources (e.g. CPU) are technically not always up to this task. The key

solution to this technical issue is to take advantage of the heterogeneous computing resources

in modern mobile device SoC.

Heterogeneous computing resources could be multi-core CPUs probably with big/little

topologies and other types of computing units such as a GPU (graphic computing unit). Based

on heterogeneous architecture design, CPU big/little cores and GPU in mobile device excel at

managing different types of workloads, as shown in the example below. With image blurring

process, commonly used in image processing related applications (such as Portrait Play),

offloading from CPU to GPU can reduce up to 50% power consumption under similar

performance.

Table 1. Comparison of Heterogeneous Computing Resources in Mobile Device SoC

 CPU big-core CPU little-core GPU

Performance high Moderate High

Power
consumption

high Low Low

Ideal cases task-parallel compute-
intensive tasks

routine light-weight
tasks

data-parallel compute-
intensive tasks

Example browser scrolling or
game

email or audio playing
face beautification or
multi-media processing

As shown in Figure 1, CorePilot™ 2.0, the evolution of CorePilot 1.0, now supports not only

symmetric CPU cores, asymmetric big/little CPU cores scheduling, but also cooperation with CPU

and GPU. By adding support to GPU, we believe CorePilot 2.0 can provide better user experience

by providing higher performance with lower power consumption. In CorePilot 2.0, this can be

fulfilled by utilizing these heterogeneous computing resources in two ways. First one is to

dispatch tasks to the suitable heterogeneous computing resources. For example, routine light-

weight tasks should be executed on the CPU little cores instead of the CPU big cores, since the

little cores can suit this kind of performance need. Another example is to execute the latency-

oriented tasks, such as browser scrolling, on the CPU big cores to reduce the response time. The

second way is to balance the load between the heterogeneous computing resources. For

example, when the CPU little cores are busy, some tasks can be migrated to the CPU big cores or

GPU (if the task is programmed by OpenCL) to balance the whole system load.

MediaTek CorePilot 2.0

4

Figure 1. Evolution of MediaTek CorePilot

MediaTek, as a leading SoC-design company, not only provides series of high quality SoCs for

mobile devices with heterogeneous computing resources, but also introduces the

heterogeneous computation technology, CorePilot 2.0, to utilize the on-chip heterogeneous

computing resources, thereby improving user experience. The details of CorePilot 2.0 are

described in below. The big/little CPU scheduler, introduced on CorePilot 1.0 in 2013, is first

described briefly, followed by the Device Fusion technology--CPU/GPU. Finally, we provide case

studies to demonstrate the benefit of CorePilot 2.0.

MediaTek CorePilot － Heterogeneous Multi-Processing

Technology

ARM brought heterogeneous computing to mobile SoC designers with big.LITTLE™ architecture.

ARM big.LITTLE combines high-performance “big” CPUs with energy efficient “LITTLE” CPUs on

the same SoC to reduce energy consumption (and thereby preserve battery power), while still

delivering peak performance.

Since both CPUs are architecturally compatible, workloads can be allocated to each CPU, on

demand, to suit performance needs. High intensity tasks such as games are allocated to the big

CPUs, for example, while less demanding tasks such as email and audio playback are allocated to

the “LITTLE” CPUs. The load balancing happens quickly enough to be completely transparent to

the user and can reduce energy consumption by up to 70% for common tasks.

MediaTek CorePilot 2.0

5

Table 2. Comparison of Different Heterogeneous Computing Models

 Cluster Migration CPU Migration
Heterogeneous Multi-
Processing (HMP)

Switching
Granularity

low –
cluster of core

medium –
pair of big/little
cores

high –
each single core

Maximum
Performance

medium –
all “big”

medium –
all “big”

high –
all “big” + all “little”

Average
Power
Saving

Low Medium High

There are three different software models for implementing heterogeneous computing with the

ARM big.LITTLE architecture: Cluster Migration, CPU Migration and Heterogeneous Multi-

Processing. The comparison of these different heterogeneous computing models is shown in the

above in

Table 2. When compared with the other two models, the Heterogeneous Multi-Processing

(HMP), adopted by MediaTek Corepilot, shows outstanding performance and power saving.

Based on open-source HMP technology derived from Linaro (http://www.linaro.org), CorePilot

maximizes the performance and power-saving potential of heterogeneous computing with

interactive power management, adaptive thermal management and advanced scheduler

algorithms. The overview of CorePilot is shown in Figure 2 below. As shown in Table 3

CorePilot’s Interactive Power Manager reduces the amount of power and heat generated by

CPU via two main modules. The Dynamic Voltage and Frequency Scaling module automatically

adjusts the frequency and voltage of CPUs on-the-fly, while the CPU Hot Plug module switches

CPUs on and off on demand.

The thermal limits of a mobile device can be exceeded when its CPU or GPU runs at peak

performance. This, in turn, can be detrimental to the user experience. Adaptive Thermal

Management (ATM) addresses this by monitoring device temperatures and dynamically

adjusting the power budget to keep them within a specified range, while minimizing the impact

on performance. Compared with traditional dynamic power management designs with fixed

temperature points for thermal throttling, ATM can achieve a 10% performance increase.

file:///C:/Documents%20and%20Settings/mtk00131/My%20Documents/www.linaro.org

MediaTek CorePilot 2.0

6

Figure 2. Overview of CorePilot

Table 3. Key Components of Interactive Power Management

Dynamic
Voltage
& Frequency
Scaling

Traditional symmetric multi-processors apply a unified Dynamic
Voltage and Frequency Scaling (DVFS) policy to all CPUs.
CorePilot’s Interactive Power Management applies different
DVFS policies to ‘big’ and ‘LITTLE’
cores to maximize power and thermal efficiency

CPU Hot Plug Interactive Power Management monitors CPU load and seamlessly
switches cores on or off to save power or to increase
performance. CPUs can also be
switched off with non-CPU-bound tasks to reduce power
consumption.

Performance is the usual goal for operating system scheduling, and technology has evolved over

time accordingly. With Symmetric Multi-Processing (SMP), the Completely Fair Scheduler (CFS) is

currently the most common scheduling algorithm and it distributes the workload equally among

CPU cores. With Heterogeneous Multi-Processing, however, CFS can result in performance

degradation, since tasks are not efficiently matched to CPU core capabilities. MediaTek

CorePilot, on the other hand, delivers a true heterogeneous compute model by using a

scheduling algorithm that assigns tasks to two different schedulers, according to their priority —

the Heterogeneous Multi-Processing (HMP) scheduler and Real-Time (RT) scheduler. The HMP

scheduler is responsible for assigning normal-priority tasks to the big/little

CPU clusters and performs four main functions, shown in Table 3. The RT scheduler assigns high-

priority real-time tasks that require a fast CPU response to the big/little cluster. The RT

scheduler has priority over the HMP scheduler and MediaTek has further modified its design so

MediaTek CorePilot 2.0

7

that the highest priority tasks are assigned to performance-driven CPUs. Lesser priority real-time

tasks are then assigned to other available CPUs.

Table 4. Key Components of the MediaTek HMP Scheduler

Load
tracking

By tracking the status of each task, the HMP scheduler determines which task is
heavy and which task is relatively light.

CPU
Capacity
Estimation

The HMP Scheduler is aware of the available compute capacity of each processor
in the big/little clusters, and so is able to make the most appropriate scheduling
decisions.

Intelligent
Load-
Balancing

Load tracking and CPU capacity estimation are used in concert for rapid load
balancing – assigning and reassigning tasks to performance-driven or energy-
efficient CPUs, as required.

Task
Packing

The HMP scheduler consolidates as many light-load tasks as possible and matches
them to the most appropriate CPUs. CPUs without active tasks can then be
switched off via CPU Hot Plug, or put into an idle state.

Figure 3. Process Flow for the HMP and RT Schedulers

MediaTek Device Fusion － Heterogeneous Computing with a

Fused CPU+GPU Device

Recent findings suggest that using CPU and GPU together is a more efficient way for computing

when compared with using CPU only, because different types of computing resources may

MediaTek CorePilot 2.0

8

better suit different workloads. For example, the CPU is generally good at control-intensive

workloads while GPU performs well at compute-intensive ones. OpenCL (Open Computing

Language), a popular open standardized computing platform for heterogeneous computing, is

designed to serve as the common high-level language for exploitation of computing resources.

The OpenCL program can be executed on every device, including the mobile device which

supports the OpenCL standard APIs.

CorePilot 2.0, including Device Fusion technology, can intelligently exploit the heterogeneous

computing resources (i.e. CPU and GPU) to improve efficiency and performance. Via the Device

Fusion, OpenCL programs can be well dispatched to on-chip CPU and GPU to improve efficiency

and performance.

Currently, it is challenging for programmers to write programs that can effectively utilize

heterogeneous devices (i.e. GPU and CPU) to achieve high performance/efficiency computing.

Anticipating device computing capacity and program affinity (i.e. preference to device) for a

specific program is not straightforward. With incorrect anticipation, performance could be

degraded due to improper dispatching of jobs (of a program) to device(s).

To address these problems, CorePilot 2.0 introduces the intelligent technology—Device Fusion,

which can efficiently execute OpenCL programs by fusing GPU and CPU computing capabilities.

As shown in Figure 4 below, Device Fusion is able to flexibly dispatch each kernel (functional

part) of an OpenCL program to the most suitable device. Moreover, for throughput-oriented

programs, Device Fusion provides an infrastructure which can automatically maintain parallel

execution on GPU and CPU. By using the Device Fusion, programmers can focus on algorithm

development and obtain performance improvements without being affected by platform issues.

Device Fusion can dispatch OpenCL programs to the most suitable device or to both devices for

parallel execution.

Figure 4. Dispatch Options in Device Fusion

MediaTek CorePilot 2.0

9

Problem of executing OpenCL program in mobile SoC

Although OpenCL programs can be executed on all OpenCL-supported devices, the performance

may not meet the programmer’s expectation. The reasons are as follows.

The program affinity (i.e. preference to device) for a specific program is not easy to predict. The

affinity of a program could be affected by algorithm design, implementation or (and)

architecture of the target device. A program running on the un-preferred device results in lower

performance when comparing to the preferred device. For example, two different

implementations of the same object detection algorithm, violaJones_NAIVE and

violaJones_LWS32, shows different program affinities, leading to large performance difference

when executing on CPU and GPU, as shown in the Figure 3. From the figure, executing

violaJones_LWS32 (which prefers GPU) on the CPU results in severe performance degradation

compared to the GPU. The violaJones_NAIVE shows the opposite results – CPU has better

performance.

The figure below shows the execution time of two OpenCL kernel, violaJones_NAIVE and

violaJones_LWS32, under CPU and GPU. Different implementations of the same algorithm lead

to dramatic performance differences on CPU and GPU.

Figure 5. Performance Differences on CPU and GPU

The computing capability of the target devices, where the programs will be executed, may not

be anticipated easily by programmers. Even if the programmers can focus on specific CPU and

GPU as the target devices, the computing capability of CPU and GPU still cannot be anticipated

in a straightforward way. This is because under the mobile device environment, the computing

ability of CPU and GPU is often reduced due to power budget or the thermal constraint. Once

the program is dispatched to a device with lower computing capability (below anticipation), the

anticipated performance cannot be achieved. Such condition worsens for the throughput-

oriented programs to be executed in parallel on both CPU and GPU.

For example, the performance of parallel execution of the program “Juliaset” is shown in Figure

6 below. The y-axis indicates the performance of parallel execution. The x-axis shows the ratio n,

where n is the ratio of jobs dispatching to GPU and 1-n is the ratio of jobs dispatching to CPU. As

MediaTek CorePilot 2.0

10

seen in the figure, the maximum performance occurs when the ratio is 0.56, indicating GPU and

CPU handles 56% and 44% (i.e. 100% - 56%) of the jobs, respectively. With incorrect anticipation

to CPU/GPU computing capability (e.g. given the ratio less than 0.5), performance of parallel

execution could be lower than that of only dispatching to GPU.

Figure 6. Performance of Parallel Executing Juliaset with Different Dispatch Ratios

The final reason the computing capacity may not be anticipated by programmers is the

additional overhead for parallel execution. For programs aiming to be executed in parallel,

enabling data sharing and synchronization incurs additional overhead, such as cache

synchronization. Such overheads typically are hardware-dependent. Once the overheads

outweigh the benefits of parallel execution, the performance could be below anticipation.

Unfortunately, it is not easy for programmers to evaluate if parallel execution is beneficial by

considering the overhead.

MediaTek Device Fusion

The Device Fusion is presented as a virtual OpenCL device. The virtual device, emulated on top

of the CPU and GPU devices1, is compliant with the standard OpenCL API so that the existing

OpenCL applications can easily take advantage of the Device Fusion without any modification.

The overview of Device Fusion is described in Figure 7 below.

1
 Note that, the standalone OpenCL CPU and GPU devices are still available.

MediaTek CorePilot 2.0

11

Figure 7. Overview of Device Fusion

The virtual device includes three modules: kernel analysis module, parallel execution

infrastructure module, and dispatch strategy module. When an OpenCL program is assigned to

the virtual device, each kernel of the program will be first analyzed to collect necessary

information, such as if it is worthwhile for the kernel can to be executed in parallel. If the

parallel execution is allowed, the parallel execution infrastructure module is invoked to prepare

the infrastructure, such as data sharing and synchronization. Finally, the dispatch strategy

module determines the number of jobs (i.e. work-items of the OpenCL program) of the kernel to

CPU and GPU, respectively, according to the internal load-balancing algorithm. However, if the

parallel execution is not available, the virtual device tries to dispatch the entire kernel to the

most suitable device utilizing the advice of the dispatch strategy module.

Case Studies Using CorePilot 2.0

Super Resolution

The first case study to demonstrate the benefit of CorePilot 2.0 is SuperResolution.

SuperResolution is an image-processing algorithm which can enhance image resolution and

extract significant detail from the original image. SuperResolution requires significant

computation to extract the detail. In SuperResolution, the process is divided into several stages:

find_neighbor, col_upsample, row_upsample, sub and blur2. Each stage is implemented as an

OpenCL kernel. In this case study, three different image resolutions: 1MPixel, 2MPixel and

4MPixel are enlarged by 2.25x by using GPU only, CPU only and Device Fusion (in CorePilot 2.0),

respectively. The execution time of each kernel is shown in below.

As shown in Figure 8 below, Device Fusion outperforms both GPU and CPU in three different

resolutions by up to 55% and 59%, respectively. The outperformance is the result of the parallel

execution of the major kernel, find_neighbor, and the dispatch the other kernels to the most

suitable device. The excellence of the Device Fusion can be shown in this case study: it can

intelligently determine the best dispatch way for real-world algorithms, achieving high

efficiency/performance.

MediaTek CorePilot 2.0

12

Figure 8. Execution Times Breakdown of Each Stage in SuperResolution under GPU, CPU and Device

Fusion

Face Detection

Face detection is a frequently used method to recognize people’s faces from an image. It is

broadly used in mobile devices when taking pictures or device unlocking. The flow of face

detection is shown in Figure 7 below. When the face detection program is executed via

CorePilot 2.0, each function will be dispatched to the suitable device by the Device Fusion. For

example, the function “IntegralStep1” is dispatched to GPU and the function “ViolaJones” is

dispatched to CPU. For the functions dispatched to CPU, they are scheduled by the HMP CPU

scheduler included in CorePilot. The performance and energy consumption results are also

shown in Figure 9. According to the figure, Device Fusion leads to performance improvement by

22% and 146% when compared with CPU only and GPU only, respectively. This is because the

CorePilot 2.0 can dispatch jobs to the most suitable heterogeneous computing devices. In

addition to performance improvement, CorePilot 2.0 can reduce the energy consumption of

face detection by 17% and 18% when compared with CPU only and GPU only, respectively. Such

achievement is positive to user experience due to the performance improvement and energy

consumption reduction.

MediaTek CorePilot 2.0

13

Figure 9. Flow of Face Detection and Performance/Energy Consumption Results Comparison

Conclusion

CorePilot 1.0 efficient management to symmetric or asymmetric multi-core CPUs to achieve

load balance and better performance. The enhanced CorePilot 2.0, the CorePilot 1.0 successor `,

cant both manage CPU cores, but also efficiently manage both CPUs and GPU in modern mobile

device SoCs. CorePilot 2.0 includes Device Fusion technology that provides efficient computing

by dispatching workloads programmed by OpenCL languages to the suitable device or to both

devices. Since CPU and GPU expert at different workloads, CorePilot 2.0 can utilize both CPU

and GPU to run various workloads to achieve better user experience by providing higher

performance with lower power consumption.

In this paper, two multi-media case studies are shown to demonstrate the benefit of using

CorePilot 2.0. Using both CPU and GPU in CorePilot 2.0 achieves up to 146% performance

improvement when comparing to using CPU-only or GPU only. While achieving performance

improvement, CorePilot 2.0 also leads to lower energy consumption by up to 18% when

comparing to using CPU-only or GPU only.

